Stochastic Model Predictive Control: State space methods

نویسنده

  • Mark Cannon
چکیده

1 Performance objective and closed-loop convergence 1 1.1 Stochastic system models . . . . . . . . . . . . . . . . . . . 1 1.2 Performance cost . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Cost evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Unconstrained optimal control . . . . . . . . . . . . . . . . . 12 1.5 Receding horizon control, stability and convergence . . . . . . 17 1.6 Supermartingale convergence analysis . . . . . . . . . . . . . 21 1.7 Numerical Example . . . . . . . . . . . . . . . . . . . . . . 23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPC-Relevant Prediction-Error Identification

A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space model is realized from a continuous-discrete-time linear stochastic system specified using transfer f...

متن کامل

Reachability checking in complex and concurrent software systems using intelligent search methods

Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...

متن کامل

Variational Bayesian learning of nonlinear hidden state-space models for model predictive control

This paper studies the identification and model predictive control in nonlinear hidden state-space models. Nonlinearities are modelled with neural networks and system identification is done with variational Bayesian learning. In addition to the robustness of control, the stochastic approach allows for various control schemes, including combinations of direct and indirect controls, as well as us...

متن کامل

T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY

A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...

متن کامل

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008